HAZARDS - A BROADER VIEW

Reshant Chandra, Saurabh Rawat

Abstract

When designing asynchronous sequential circuits, care must be taken to conform to certain restrictions and precautions to ensure proper operation. The circuit must be operated in fundamental mode with only one input changing at any time and must be free of critical races. Hazards are unwanted switching transients that may appear at the output of a circuit because different paths exhibit different propagation delays. Hazards occur in combinational circuits, where they may cause a temporary false output value. When this condition occurs in asynchronous sequential circuits, it may result in a transition to a wrong stable state. It is therefore necessary to check for possible hazards and determine whether they cause improper operations. In this paper several steps are taken to eliminate their effect.

Index Terms-

1 Hazards

In synchronous sequential circuits it is important that undesirable glitches on signals should not occur. The glitches caused by the structure of a given circuit and propagation delays in the circuit are referred to as hazards. Two types of hazards are there- i) Static and ii) Dynamic

Dynamic Hazard (b)

A static hazard exists if a signal is supposed to remain at a particular logic value when an input variable changes its value, but instead the signal undergoes a momentary change in its required value. As shown above, one type of static hazard is when the signal at level 1 is supposed to remain at 1 but dips to 0 for short time. Another type is when the signal is supposed to remain at level 0 but rises momentarily to 1 , thus producing a glitch. A different type of hazard may occur when a signal is supposed to change from 1 to 0 or from 0 to 1 . If

- Author Reshant Chandra is a faculty of computer science department in
Graphic Era University, India. E-Mail: reshant.chandra@gmail.com
- Co-Author Saurabh Rawat, Graphic Era University, India.
such a change involves a short oscillation before the signal settles into its new level, than a dynamic hazard is said to exist.

2 Static Hazards

Above figure shows $X_{1} \stackrel{\text { circuir }}{=} X_{2} \underset{=}{\text { with }}=1$ static hazard. Let circuit be in a state where $X_{1}=X_{2}=X_{3}=1 \quad x_{3}=1$, in which case $\mathrm{f}=$ 1. Now ${ }_{1}$ changes from 1 to 0 . Then the circuit is supposed to maintain $\mathrm{f}=1$. Considering what happens when the propagation delays through the gates are taken into account. The change in X_{1} will probably be observed at point p before it will be seen at point q because path from X_{1} to q has an extra gate (not) in it. Thus signal at p will become 0 before the signal at q becomes equal to 1 . For a short time both p and q will be 0 , causing f to drop to 0 before it recovers back to 1 . This give rise to signal depicted above (a). The glitch on f can be prevented as

$$
f=x_{1} x_{2}+\overline{x_{1}} x_{3}
$$

2.5 Left shift ($\mathbf{a} \ll \boldsymbol{b}$)

In left shift operator every bit in the operand is simply moved a given number of bit positions towards left. ' 0 ' are inserted from right in the vacant places. Left shifting also work for signed negative integers, since the negative numbers is saved in the form of 2's complement the left shift is applied to 2 's compliment of the positive counterpart of the number, but in case of signed integer it may cause a problem cause of the sign bit as a positive number might turn negative and negative number might turn positive. Due to this problem shift are normally implemented on unsigned int. Left shifting for un-
signed integer is equivalent to multiplying the number by 2 for each bit shifted till overflow occurs i.e. number becoming lager than a 32 bit integer.

Example of left shifting:

1) Example for left shift for positive integer

Let $a=324=00000000000000000000000101000100$
$\mathrm{x}=\mathrm{a} \ll 2=00000000000000000000010100010000=1296$
$=324^{*} 2 * 2$ (since 2 bits is shifted hence the result is $\mathrm{a}^{*} 2 * 2$)
2) Example for left shift for negative signed integer

Let $\mathrm{a}=-10=11111111111111111111111111110110$
$\mathrm{x}=\mathrm{a} \ll 1=11111111111111111111111111101100$ = which is 2 's compliment of 20 hence denote -20 .
I. 3) Example for inconsistence in left shift for signed integer ,change in signed bit (' 0 ' to ' 1 ' and ' 1 ' to ' 0 ').
Let $\mathrm{a}=-34218=11111111111111111000000101011110$
Now let $\mathrm{x}=\mathrm{a} \ll 16$ will result in
$x=10000001010111100000000000000000=-2124546048$
which is equal to -34218 * $\left(2^{\wedge} 16\right)$ hence till now it has worked fine. Now what will happen if we'll left shift x one more time. On $x \ll 1$ the resultant will be
$00000010101111000000000000000000=45875200$ which is a positive number as the sign bit got changed. Hence inconsistence may occur if we try to left shift signed integer.
II. 4) Example for overflow due to left shifting in unsigned integer.
Let $\mathrm{a}=45875200=00000010101111000000000000000000$.
Now let $x=a \ll 6$ will result in
$x=10101111000000000000000000000000=2936012800=a$ * (2^6)
till now it works fine (here it's an unsigned integer hence all 32 bits represent value of the integer, there is no signed bit). Now if we try to left shift one more bit the answer should be x * $2=$ 5872025600 which is a very big number and can't be represented using 32 bits. Hence implementing one more shift will make the number go out of bound.
$x \ll 1=01011110000000000000000000000000=1577058304$ which not the answer as expected since overflow has occurred.

2.6 Right shift (a>>b)

In right shift operator every bit in the operand is simply moved a given number of bit positions towards right. The right most bits are drop and new bits are inserted in from left. On the bases of which bit to be inserted from the left, right shift is divided into two type, logical right shift and arithmetic right shift.

2.6.1 Logical right shift

Inserts ' 0 ' and does not preserve the sign bit. In logical right shift every single bit is shifted right and ' 0 ' is inserted at the vacant bit position on the left. It is used to perform division of unsigned integer by 2 for each bit shifted. When ' n ' bits are shifted the number is divided by $\left(2^{\wedge} n\right)$.

Example of logical right shift:
$\mathrm{a}=1988=00000000000000000000011111000100$ now let us
perform $x=a \gg 2$ then
$x=00000000000000000000000111110001=497$
$x=a /\left(2^{\wedge} 2\right)$

2.6.2 Arithmetic right shift

Fill the vacant bits position with the value stored in the signed bit or the left most bit. It preserved the sign bit hence it is also known as signed bit. In case left most bit is ' 1 ' then ' 1 ' is inserted and if the left most but is ' 0 ' then ' 0 ' is inserted. It is mainly implemented for signed integer. Shifting right by n bits on the 2 's compliment of the signed integer gives the effect of dividing by $\left(2^{\wedge} n\right)$.

Example of Arithmetic right shift:
$a=-320=11111111111111111111111011000000$
now let $x=a \gg 1$ then
$x=11111111111111111111111101100000$
which is 2 's compliment of 160 hence -160
$\mathrm{x}=\mathrm{a} / 2$
It depends on compiler which right shift to use. Logical right shift is used many when the bits does not represent a number but simply a sequence of bits, while arithmetic right shift are used in case of sign integer when sign bit is need to be preserved. Most of the C compiler use logical right shift for unsigned integer while arithmetic right shift for the signed integer. Dues to this inconsistence shift operations are usually performed on unsigned integer.

3 Implemwntation Of Bitwise Operators

Till now we have different type of bitwise operators now we'll show how these bitwise operators can be used in a C programme. Multiple tasks can be done using bitwise operators; shift operators can be used to multiply and divided a number by 2 has been already illustrated above. Similarly there are many other applications of bitwise operator in C language. Different applications of bitwise operators are:

3.1 As a modulus operator:

The modulus operator computes the remainder after dividing its first operand by its second. Bitwise AND operator can be used as modulus operator.
Bitwise AND operator can be used to calculate the modulus of numbers denoted by $\left(2^{\wedge} n\right)$, where n is natural number. To calculate modulus of number ($2^{\wedge} \mathrm{n}$) we need to perform bitwise AND with $\left(2^{\wedge} \mathrm{n}\right)$-1.To understand how it works we need to first find the binary equivalent $\left(2^{\wedge} n\right)-1$ numbers where n is natural number.

$$
\begin{aligned}
& 1=00000000000000000000000000000001 \\
& 3=00000000000000000000000000000011 \\
& 7=00000000000000000000000000000111
\end{aligned}
$$

```
15 = 0000 00000000 0000000000000000 1111
31=00000000000000000000000000011111
63=00000000000000000000000000111111
127=00000000000000000000000001111111
```

Here we can notice that all these numbers are unique because they have continuous sequence of ' 1 ' from left hand side followed by continuous sequence of ' 0 ' till the right end. To explain how it works let us take a number say 7 which will calculate modulus for 8 . The number 7 has its 3 left most bits as 1 and rest all as zero. If we perform bitwise AND of any number ' x ' with 7 the result will be; 3 left most bit will remain unchanged and others will be set to ' 0 '. Hence only the 3 left most binary bits will be left from number ' x ' and these 3 bits will represent modulus 8 of x as shown
3 binary bits represent $0-7$ values as shown:

a	B	c	Decimal equivalent
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Hence the result will be 3 left most bits which represent 0-7 in decimal which are actually the possible answers for modulus 8. Hence performing bitwise AND with 7 will actually calculate modulus 8 .

```
X = 68 = 00000000000000000000000001000100
Y = 07 = 00000000000000000000000000000111
X & Y = 00000000000000000000000000000100
68% 8 = 4 (hence it is working correctly)
```

main()\{
int num = 15;
for ($\mathrm{i}=0 ; \mathrm{i}<=100 ; \mathrm{i}++$) $\{$
$\operatorname{prinf}\left({ }^{(" \% d ", ~ i \& n u m) ; ~}\right.$
\}
\}

3.2 As Boolean flags and bit mask:

Let suppose a teacher need to send attendance of a student of 20 days as parameter to a function. One possible solution is that he makes 30 different variables, or an array of 30 integers. The bitwise logical operators are often used to create, manipulate, and read sequences of flags, which are like binary variables. Instead of variables or array these sequence can be used which take much less memory as 1 integer can handle 32 flag.

This code prints the modulus 16 of first 100 numbers using bitwise AND with 15.

We need to clear flag for each day of the month:
Flag_one: attendance of day one (0000 0000000000000000000000000001)
Flag_Two: attendance of day two
(0000 0000000000000000000000000010)
Flag_Three: attendance of day three
(0000 0000000000000000000000000100)
Flag_four: attendance of day four
(0000 000000000000000000000000 1000)
Flag_five: attendance of day five
(0000 0000000000000000000000010000)
Flag_six: attendance of day six
(0000 0000000000000000000000100000)

Flag_twenty: attendance of day twenty
(0000 0000000010000000000000000000)
Flag one mean student was present on day one; flag two mean the student was present on day two and so on.

A single variable 'attendance' will contain the record of the student the values will be stored as followed:

If the student was present on all days the data will be stored as
(0000 000000001111111111111111 1111)
If the student was present on all days except on $5,8,13$, and 20
(0000 000000000111111011110110 1111)
Attendance \& flag_one >0 means the student was present on day one.

Attendance 00000000000001111110111101101111
Flag_four $\quad 00000000000000000000000000001000$
Result of \& $00000000000000000000000000001000>0$ hence was present on day four which is true.

And if Attendance \& flag_one $=0$ means the student was absent on day one.

Attendance 00000000000001111110111101101111
Flag_five $\quad 00000000000000000000000000010000$
Result of \& $00000000000000000000000000000000=0$ ace was absent on day five which is true

To implement this we should be able to set and reset each bit individually of an integer. Handling bit individually are done by using bit mask.

Let us consider a number X , temp $=1$.
a) If I want to set nth bit i.e. set it to ' 1 ' OR operator will be used
$X=X \mid($ temp $\ll n)$, where X is the number and nth bit need to set to ' 1 '
In the above example if we want to mark the presence of day
two we perform
Attendance $=$ attendance $\mid($ Flag_Two $)$
b) If I want to clear nth bit i.e. set it ' 0 ' AND operator will be used as followed.
$X=X \& \sim($ temp $\ll n)$, where X is the number and nth bit need to set to ' 0 '
In the above example if we want to mark the absence of day two we perform
Attendance $=$ attendance $\& \sim($ Flag_Two $)$
c) If I want to toggle nth bit i.e. change its value (if ' 1 ' the ' 0 ' and if ' 0 ' then ' 1 ')
$X=X^{\wedge}$ (temp $\ll n$), where X is the number and nth need to be toggled

4 Conclusion

We have concluded that an integer is treated as its 32 bit binary equivalent by bitwise operators and there are applied on each bit of the integer. We have seen that we can set clear or toggle a single bit of an integer. Shifting with signed integer may not give consistence result hence shifting is mainly done with unsigned integers but they too face overflow problem. We can use bitwise operator to multiply divide and even find the modulus of a number. Bitwise operators allow us to treat binary sequence of an integer as Boolean flags hence using comparatively very less space. .

References

[1] Kernighan; Dennis Ritchie (March 1988). The C Programming Language (2nd ed.).
[2] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming,. Addison Wesley, Reading, MA, 2nd edition, 1973.
[3] The Ultimate C: Concepts, Programs and Interview Questions (Paperback) by R. Nageswara Rao
[4] "Operator (C\# Reference)". Microsoft. Retrieved 14 July 2013.
[5] C : The Complete Reference 4 Edition (Paperback) by Herbert Schildt
[6] . Head First C (Paperback) by David Griffiths
[7] Programming with C 3 Edition (Paperback) by Byron Gottfried
[8] Links:
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/BitOp/bi twise.html
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/Bitwise_Operators

